

Exploring Innovative Wing Designs to Enhance Aerodynamic Efficiency

Elizabeth Case
IA Project Showcase

Problem Statement: The demand for travel is increasing and prioritizing faster and more sufficient travel is crucial for efficiency.

Abstract

This project proposes to design, 3D print and test a 1/40th scale airplane wing model inspired by the Boeing 777x. This model will include folding wing tips, and an additional innovative feature based on feasibility such as morphing. These additions will help improve aerodynamic efficiency by simultaneously reducing drag and increasing lift, decreasing economic costs, and overall improving individual's flight experience whilst maintaining structural integrity.

This project will explore how modern wing technologies can improve flight performance through require data analysis, simulations, CAD-based modeling, and performance testing.

Background

This study aims to discover the multitude of factors that define functionality and aerodynamic efficiency in an aircraft wing, this would include methods to increase higher lift-to-drag ratio, the creation of adaptive wing technology, and the use of higher aspect ratio, allowing for less drag and contributing to better aerodynamic performance overall. This project focuses on measuring pressure, velocity, density, and temperature data to evaluate lift and drag forces on a range. The long-term goal is to design, simulate, and eventually test a wing prototype optimized for aerodynamic efficiency. Once initial models are validated, a physical prototype will be created using SolidWorks, tested with ANSYS, and 3D printed with PLA-CF and metal reinforcements, then tested using our school's wind tunnel to verify simulation results.

Materials

XFoil v6.99 – Software used to analyze airfoils, calculating lift, drag, and moment coefficients under various flow conditions.

NeuralFoil (<https://github.com/peterdsharp/NeuralFoil?tab=readme-ov-file>) – Similar but more powerful machine learning based prediction tool than XFoil used to analyze airfoil flight performance under various flow conditions.

MATLAB R2024b – Used for calculating and plotting aerodynamic curves.

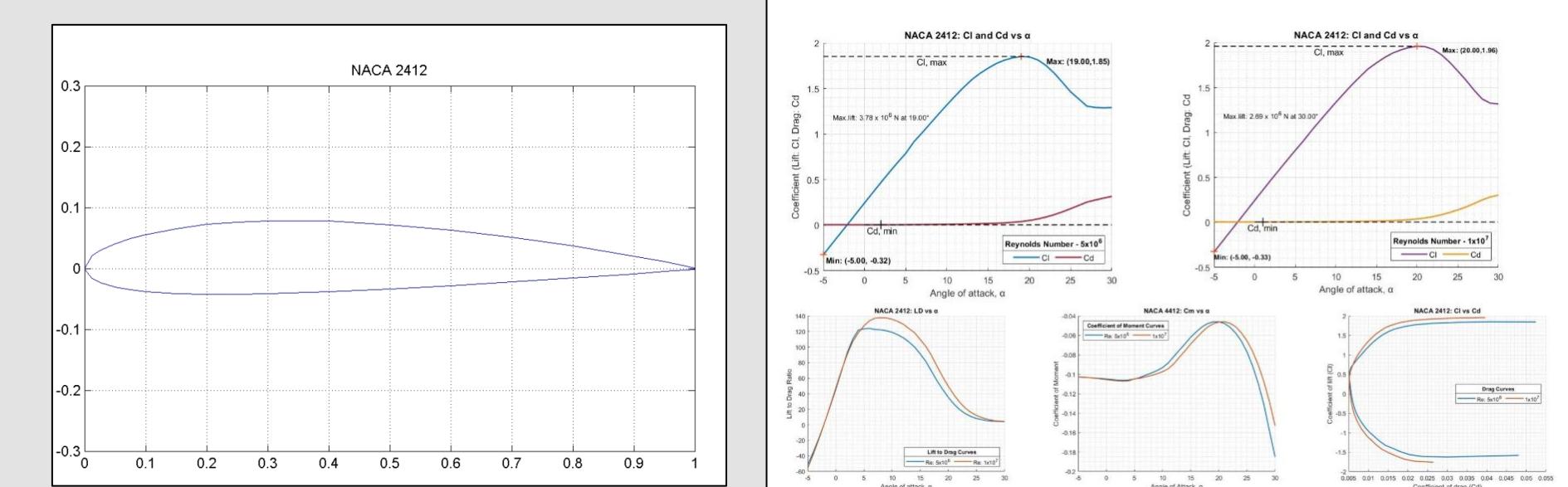
SolidWorks 2024 – CAD software for creating 3D models of the wing.

ANSYS 2025 R1 (in progress) – Software used for analyzing pressure, velocity, and temperature distributions around the wing.

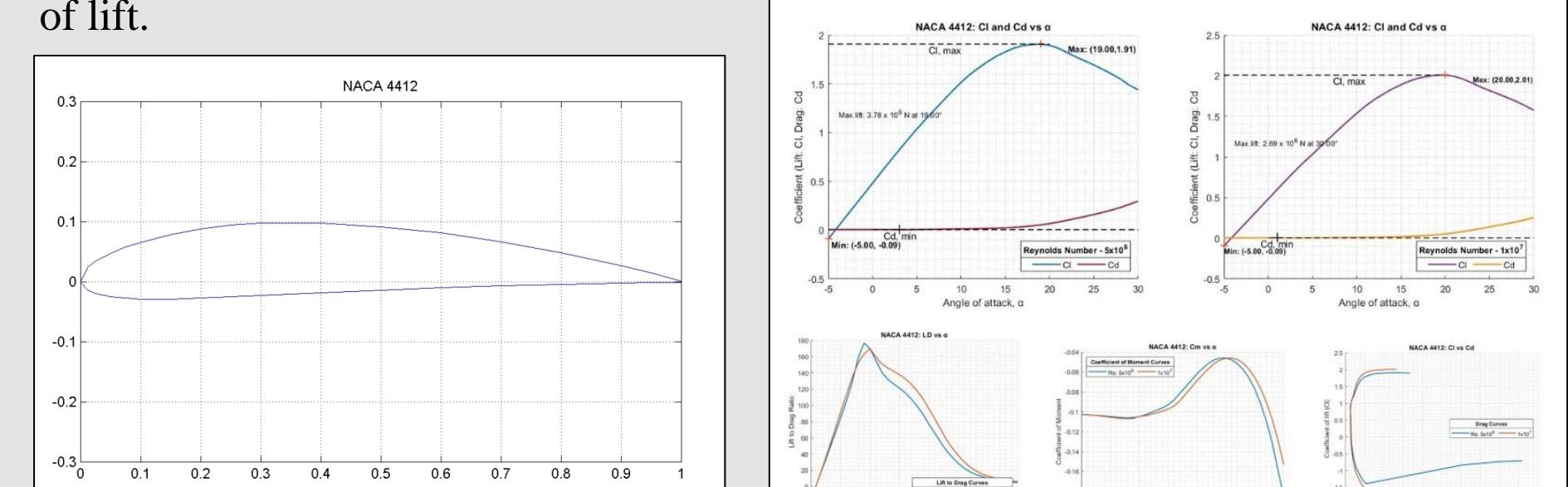
UIUC Airfoil Coordinates Data Base – (https://m-selig.ae.illinois.edu/ads/coord_database.html)

Visual Studio Code – Used to run NeuralFoil
Aerospace Engineering Textbooks and Websites

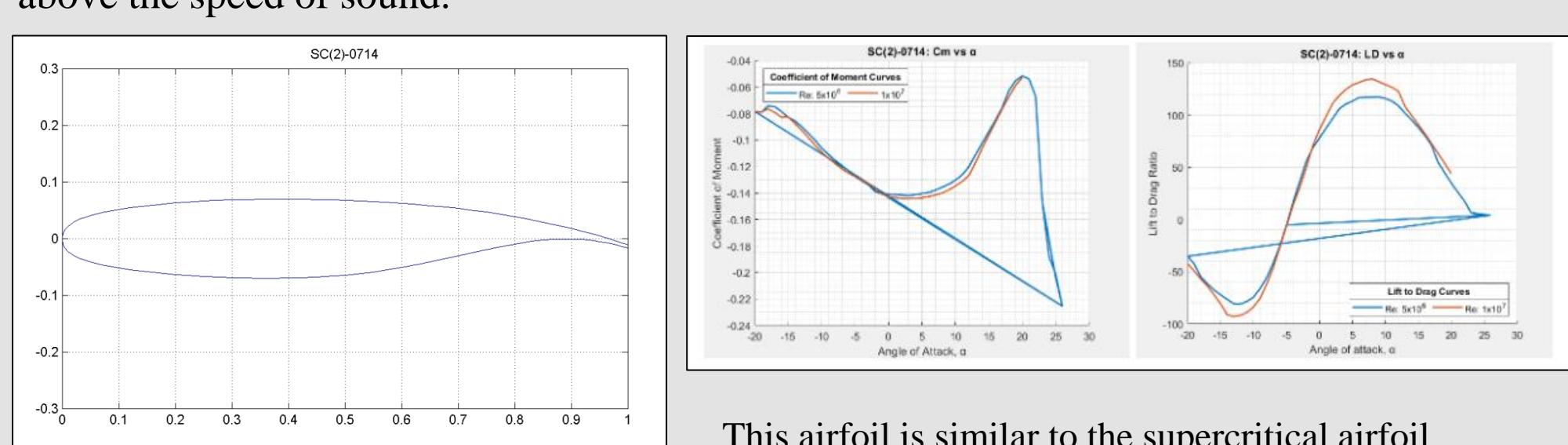
Method and Process Steps


- Researched multiple airfoils such as the NACA 2412, NACA 4412, and one supercritical airfoil known as NASA SC(2) – 0714.
- Analyzed their lift, drag, and moment coefficient using XFoil and MATLAB to compare aerodynamic performance with lower Reynolds numbers. Then calculated realistic values for Reynolds numbers, velocity, and Mach numbers under certain conditions using MATLAB.
- XFoil struggled with handling high Reynolds and Mach numbers, leading me to switch to NeuralFoil for more advanced simulations.
- After completing several simulations with NeuralFoil, I created several .dat files including the airfoils performance in different flight phases such as takeoff, climb, and cruise and ran it through MATLAB to create curve plots and a table of data to compare each airfoil's performance. I selected the airfoil that demonstrated the most promising results (NASA SC(2)-0714), focusing on mostly the lift-to-drag ratio and lift curves.

In progress:


- These tests allowed me to understand what I should look for in an airfoil, allowing me to create my own airfoil data and import it into SolidWorks. Once imported, I sketched a rough wing design with little refinements for CFD testing.
- Constructed CFD simulations in ANSYS to observe flow patterns, pressure distribution, and aerodynamic behavior using the rough wing design.

Early Data


NACA 2412 – (Maximum camber 2% at 40% of the chord from the leading edge. Maximum thickness of 12% of the chord.) Good for general aviation due to LD ratio.

NACA 4412 – (Maximum camber 4% at 40% of the chord from the leading edge. Maximum thickness of 12% of the chord.) Used for sports planes, has a higher coefficient of lift.

NASA SC(2)-0714 – (Maximum thickness of 0.14, blunt trailing edge, camber of 1.5%) Supercritical airfoil – Designed to reduce wave drag in aircrafts that operate close to or above the speed of sound.

This airfoil is similar to the supercritical airfoil the B777x uses.

Hypothesis

If modern wing designs are optimized using advanced airfoils and features, they should demonstrate increase aerodynamic efficiency, specifically higher lift to drag ratios, under realistic flow conditions. Compared to traditional designs, these profiles will allow for smoother airflow and lower fuel consumption.

BOEING. (n.d.). 777X. [www.boeing.com](https://www.boeing.com/commercial/777x). <https://www.boeing.com/commercial/777x>

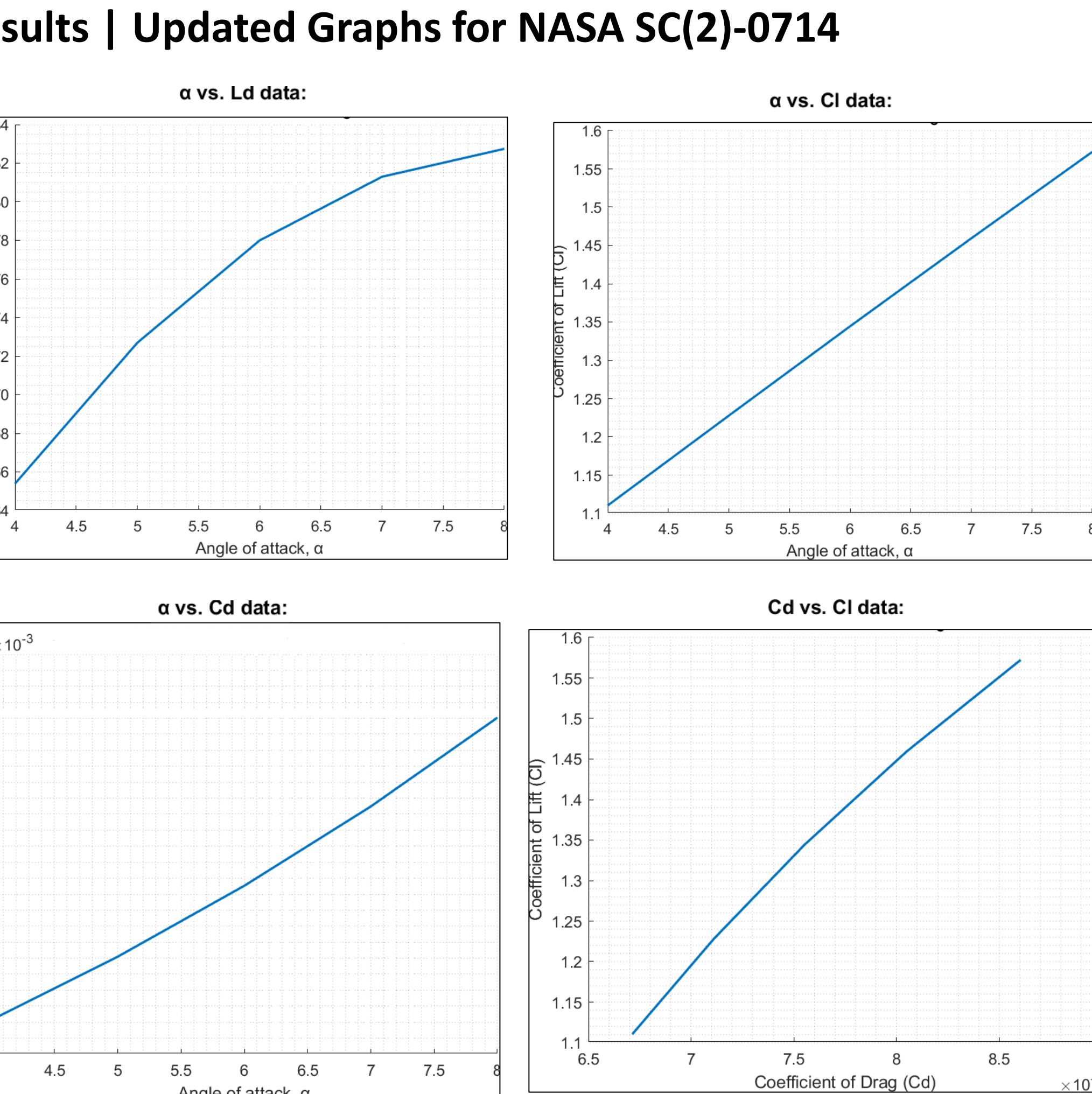
Results

Completed initial simulations using XFoil, NeuralFoil, and MATLAB focused on airfoils NACA 2412, NACA 4412, and NASA SC(2)-0714. Data revealed that the NASA SC(2)-0714 airfoil demonstrated the most favorable aerodynamic characteristics, with a life-to-drag ratio of 182.74 at Mach 0.84 and Reynolds number 2.2×10^7 . MATLAB was used to generate curve plots comparing lift, drag, and moment coefficients as a function of angle of attack. In comparison to the other airfoils, NASA SC(2)-0714 was proven to both minimize drag while maintain a strong lift performance.

Filename	AoA	CiMax	CIMax	AoA	CdMin	CdMin	Max L/D
AirfoilData(NACA2412).dat	8	1.17764561	4	0.00571814	167.093907		
AirfoilData(2412(CLIMB).dat	6	0.30603261	3	0.00554699	162.422128		
AirfoilData(NACA2412, CRUISE).dat	3	0.45519971	1	0.07955682	3.62630365		
AirfoilData(NACA2412, CRUISE2).dat	3	0.45519971	1	0.07955682	3.62630365		
AirfoilData(NACA4412).dat	8	1.41117637	4	0.00621683	179.34797		
AirfoilData(NACA4412, CLIMB).dat	6	1.29707667	3	0.00584904	183.1457		
AirfoilData(NACA4412, CRUISE).dat	3	0.64232262	1	0.10837975	4.76898071		
AirfoilData(NASA4412, CRUISE2).dat	3	0.64232262	1	0.10837975	4.76898071		
AirfoilData(SC20714).dat	8	1.57232034	4	0.00671355	182.744777		
AirfoilData(SC20714, CLIMB).dat	8	1.57232034	4	0.00671355	182.744777		
AirfoilData(SC20714, CRUISE).dat	8	1.57232034	4	0.00671355	182.744777		
AirfoilData(SC20714, CRUISE2).dat	8	1.57232034	4	0.00671355	53883		

AoA – Angle of Attack | Cl – Lift Coefficient | Cd – Drag Coefficient | L/D – Lift-to-drag ratio

Conclusion


Among the tested airfoils, the NASA SC(2)-0714 demonstrated the highest lift-to-drag ratio and consistent performance across different flight phases and Reynolds numbers over traditional airfoils. Since the SC(2)-0714 is a supercritical airfoil, this was expected. XFoil, NeuralFoil, and MATLAB provided aerodynamic coefficient analysis and data visualization to compare the performance.

Next Steps

While no SolidWorks model and CFD analysis has been completed yet, these simulations provide a strong foundation for the next phase of my project that will begin this summer. These software will allow me to evaluate real-world flow characteristics such as turbulence, separation zones, and pressure gradience, which will be applied to the physical testing in the future.

Results | Updated Graphs for NASA SC(2)-0714

References

- Jenkins, R. (n.d.). NASA SC(2)-0714 Airfoil Data Corrected for Skin Friction Boundary Layer Effects in the Langley 0.3-Meter Transonic Cryogenic Tunnel. <https://ntrs.nasa.gov/api/collection/10892000397/>
- peterdsharp. (2023). GitHub - peterdsharp/NeuralFoil: NeuralFoil is a practical airfoil aerodynamics analysis tool using physics-informed machine learning, in pure Python/Numpy. <https://github.com/peterdsharp/NeuralFoil>
- XFOIL. (n.d.). XFOIL Airfoil Design System. (2013). <https://mit.edu/aero/17.433/xfoil/>
- MATLAB. (n.d.). MATLAB Airfoil Data. (2023). <https://www.mathworks.com/help/matlab/airfoil.html>
- ANDERSON, J. (2005). Fundamentals of Aerodynamics, 4th Edition. McGraw-Hill Education.
- Selig, M. (2010). UIUC Airfoil Data Site. Illinois.edu. https://m-selig.ae.illinois.edu/ads/coord_database.html
- Hall, N. (2023, December 7). Guide to Aerodynamics. Glenn Research Center | NASA. <https://www.grc.nasa.gov/beginners-guide-to-aerodynamics/>
- Leishman, J. G. (2023). Introduction to Aerospace Flight Vehicles. In *airfoils.erau.edu*. Embry-Riddle Aeronautical University.
- Airfoil Tools. (2019). NASA 2412 (naca2412-ii). airfoiltools.com/airfoil/details/naca2412-ii
- Airfoil Tools. (2019b). NASA 4412 (naca4412-ii). airfoiltools.com/airfoil/details/naca4412-ii
- NASA SC(2)-0714 Airfoil. (2019). airfoiltools.com/airfoil/details/sc20714-ii

Using MATLAB, I generated realistic parameters for velocity, Reynolds number, and Mach number based on the altitude (starting at 312.7248m – Hartsfield Jackson altitude above sea-level)