

Inheritance of Traits in *Drosophila melanogaster*

Ridhi Mirchandani, Aarya Nigam, Samika Paspuleti

Research Question or Driving Question

Does inheritance of white eyes and sepia eyes in *Drosophila Melanogaster* follow Mendelian Genetics rules?

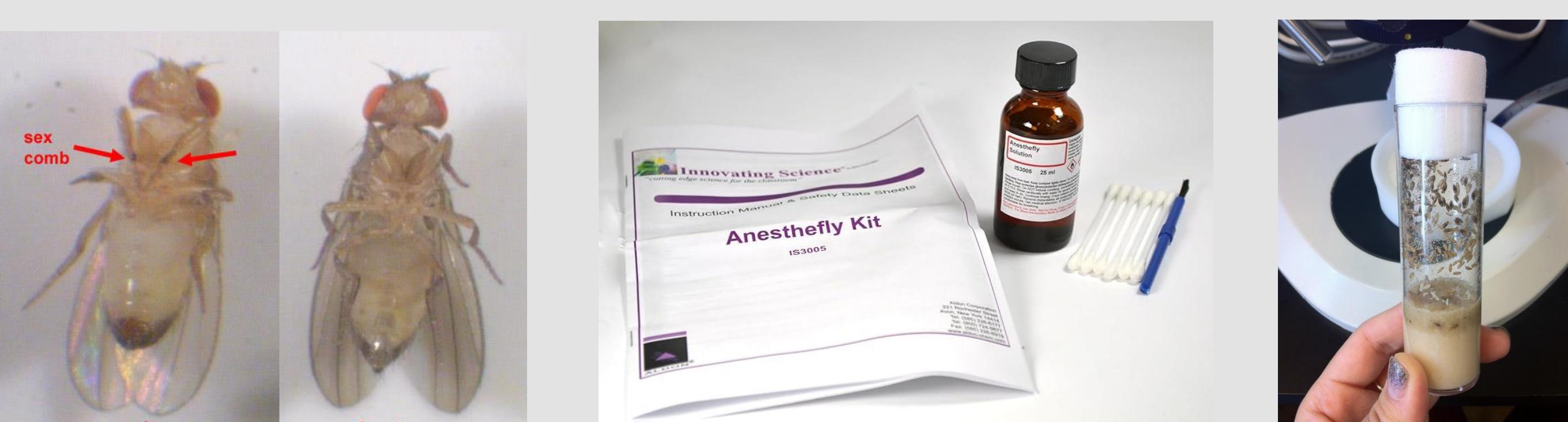
Introduction

In *Drosophila melanogaster*, sepia eyes are an autosomal recessive. The sepia eyed color is only expressed when an individual has two copies of the sepia allele. Red eyes are the wild-type phenotype, which is represented by the dominant allele (+), while sepia eyes are represented by (se). White eyes are X-linked recessive represented X^w , and since males only have one X chromosome if a male gets passed down a white eyed allele it will display the white eye phenotype. For females to display this phenotype, it must have two copies of the white eye allele. We are researching the differences in inheritance patterns between sepia eyes and white eyes in *Drosophila*. Our null hypothesis statement is there is no significant difference between the observed and expected data, and any difference is due to random chance and the inheritance follows Mendelian Genetics Rules.

F1 Generation Punnett Square
4/4 wild type

seX ⁺	seX ⁺	
+X ^w	se + X ^w X ⁺	se + X ^w X ⁺
+Y	se + X ⁺ Y	se + X ⁺ Y

F2 Generation Punnett Square


9/16 wildtype (F: 6, M: 3) ¼ white eyed (M: 4), 3/16 sepia eyes (F: 2, M: 1)

+X ⁺	+X ⁺ X ⁺	+X ^w	se X ⁺	se X ^w
+Y	++ X ⁺ Y	++ X ^w Y	+se X ⁺ Y	+se X ^w Y
se X ⁺	+se X ⁺ X ⁺	+se X ⁺ X ^w	sese X ⁺ X ⁺	sese X ⁺ X ^w
se Y	+se X ⁺ Y	+se X ^w Y	sese X ⁺ Y	sese X ^w Y

F3 Generation Punnett Square

2/8 wild type (F: 1, M: 1) 2/8 sepia eyed (F: 1, M: 1) 4/8 white eyes (F: 2, M: 2)

	se X ^w	se X ⁺
+X ^w	se + X ^w X ^w	se + X ^w X ⁺
+Y	se + X ^w Y	se + X ⁺ Y
se X ^w	sese X ^w X ^w	sese X ⁺ X ^w
se Y	sese X ^w Y	sese X ⁺ Y

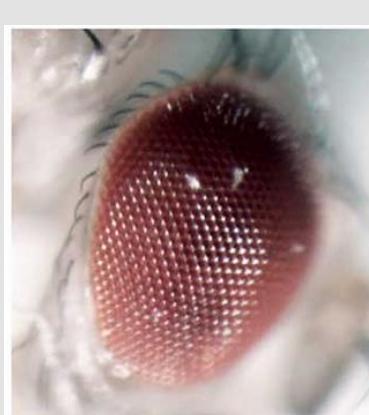
F1	Wild Type Eyes	Sepia Eyes	White Eyes
Females	34	0	0
Males	32	0	0

F2	Wild Type Eyes	Sepia Eyes	White Eyes
Females	63	23	0
Males	27	6	40

F3	Wild Type Eyes	Sepia Eyes	White Eyes
Females	13	19	33
Males	19	20	31

Methodology

Procedure


- Set up fly tubes:
1. 6 grams of Formula 4-24 and 13 mL of distilled water in 3 tubes.
- Label one tube as mating + generation, label one tube as female, and one tube as male.
- Put 6 of each sex of flies in the mating tube (white eyed males + sepia eyed females)
- 2 Mating the flies:
1. Once larvae are visible in the P generation tube, shake flies into empty tube for euthanizing.
Euthanizing: use Anesthefly solution and pour asleep flies into isopropyl alcohol/death chamber
- Separate pupae into their individual tube.
1. Repeat all above steps for each generation.

Results

Null Hypothesis: There is no significant difference between the observed and expected data, and the inheritance follows Mendelian genetics. For all the crosses we fail to reject the null hypothesis because there is no significant difference between the observed and expected data. The chi square values 0.06 (F1), 2.509 (F2), 2.628 (F3), are all less than 11.07 which is the critical value for degrees of freedom of 5 with a p value of 0.05. Since these crosses don't show statistical significance and these crosses follow Mendelian Genetics.

F1 gen Chi square

Phenotype	Observed	Expected	O-E	(O-E) ² /E
Red eyes	34	33	1	0.03
Male				
Red eyes	32	33	-1	0.03
Female				
White eyes	0	0	0	0
Male				
White eyes	0	0	0	0
Female				
Black eyes	0	0	0	0
Male				
Black eyes	0	0	0	0
Female				
Total	66	66	0	X ² = 0.06
degrees of freedom: 6-1=5			critical value: 11.07	p value: 0.05

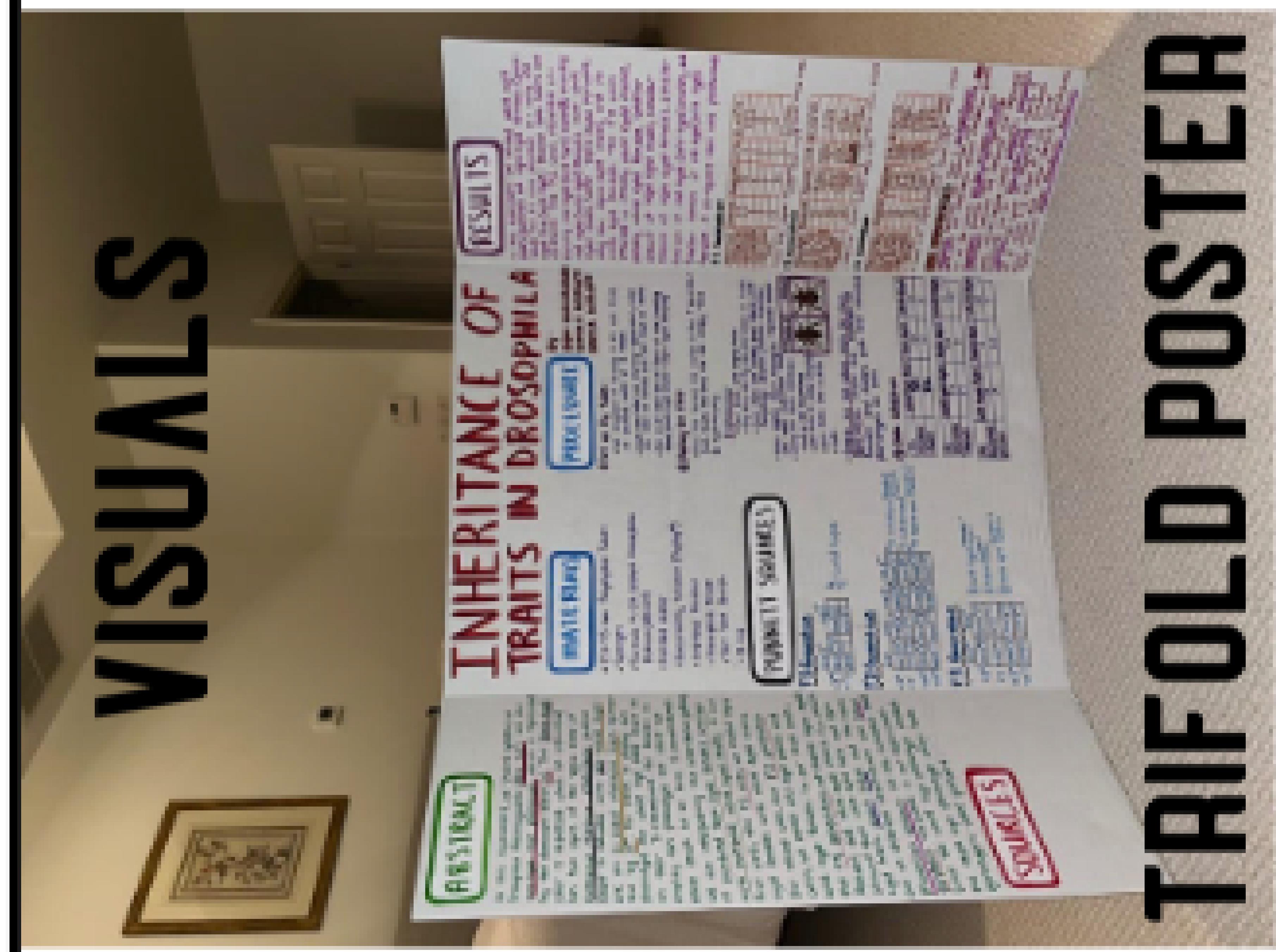
F2 gen Chi square

Phenotype	Observed	Expected	O-E	(O-E) ² /E
Red eyes	63	59.625	3.375	0.191
Female				
Red eyes	27	29.8125	-2.8125	0.265
Male				
White eyes	0	0	0	0
Male				
White eyes	40	39.75	0.25	0.002
Female				
Black eyes	23	19.875	3.125	0.491
Male				
Black eyes	6	9.9375	-3.9375	1.560
Female				
Total	159	159	0	X ² = 2.509
degrees of freedom 6-1=5			critical value: 11.07	p value: 0.05

F3 generation chi square

Phenotype	Observed	Expected	O-E	(O-E) ² /E
Red eyes	13	16.125	-3.125	0.606
Female				
Red eyes	19	16.125	2.875	0.513
Male				
White eyes	33	32.25	0.75	0.017
Female				
White eyes	31	32.25	-1.25	0.048
Male				
Black eyes	19	16.125	2.875	0.513
Female				
Black eyes	20	16.125	3.875	0.931
Male				
Total	129	129	0	X ² = 2.628
degrees of freedom 6-1=5			critical value: 11.07	p value: 0.05

Acknowledgements


Desharnais, R. (2019). Fly Lab JS. www.sciencecourseware.org.
<https://www.sciencecourseware.org/FlyLabJS/>
Romberger, T. & Purdue University. (1933). Eye-Colors in *Drosophila*. In *Proceedings of Indiana Academy of Science* (pp. 261-264).

INVESTIGATING THE INHERITANCE OF SEPIA EYES IN DROSOPHILA MELANOGLASTER

MARYA NIGAM, RIDHI MIRCHANDANI, SAMIKHA PASPULETI

IS THE INHERITANCE OF THE WHITE EYE AND SEPIA EYE PHENOTYPE A PART OF MENDELIAN GENETICS?

VISUALS

CONCLUSION

SINCE ALL THESE CROSSES DON'T SHOW STATISTICAL SIGNIFICANCE, THIS MEANS THESE CROSSES FOLLOW MENDELIAN GENETICS, AND THE GENES AREN'T LINKED. MENDELIAN GENETICS SHOW SIMPLE GENETICS WITH TWO ALLELES BEING ON ONE GENE, AND ONE OF THE ALLELES SHOWING COMPLETE DOMINANCE, SO WHEN THE CHI-SQUARE SHOWS THAT THE DIFFERENCE IS EXPECTED AND OBSERVED IS DUE TO CHANCE, THAT MEANS THAT THE GENES CROSSED IN A SIMPLE COMPLETE DOMINANCE WAY. IF THERE WAS A STATISTICALLY SIGNIFICANT DIFFERENCE, THEN THAT WOULD SHOW THE GENES CROSSED IN A WAY THAT IS CONSIDERED NON-MENDELIAN GENETICS, WHICH COULD BE GENE LINKAGE, CODOMINANCE, INCOMPLETE DOMINANCE, ETC....

TRIFOLD POSTER

DR. GINNY BERKEMEIER