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Conclusion

The study confirms that AI-based filtering, specifically using 

convolutional neural networks, significantly enhances the quality 

of EMG signals used in myoelectric prosthetic control. Compared 

to traditional filtering methods, the CNN achieved lower mean 

squared error and higher signal-to-noise ratio, effectively 

suppressing unwanted noise without distorting the underlying 

muscle signal patterns. This led to improved accuracy in 

interpreting movement intentions, which is critical for reliable 

prosthetic performance.

Although AI filtering introduces some computational overhead, the 

processing times remained within acceptable limits, suggesting 

feasibility for real-time application with further optimization. The 

results demonstrate promising potential for integrating AI-

enhanced signal processing into next-generation prosthetic 

systems, particularly for individuals with above-elbow amputations 

or complex movement needs.

Future work should focus on expanding dataset diversity, 

optimizing model efficiency for embedded deployment, and 

conducting real-world testing with amputee users. By advancing 

EMG signal processing through AI, this research paves the way 

for more responsive, intuitive, and accessible prosthetic 

technology.

Future efforts should focus on training the model with more diverse EMG datasets, including samples from 
individuals with limb loss across different amputation levels. Incorporating temporal and dynamic scenarios—such 
as ambulatory motion, electrode drift, and surface variation—will help the model better approximate real-world 
variability.

In parallel, architectural innovation is essential. Exploring hybrid models that combine CNNs with attention 
mechanisms or recurrent neural networks (RNNs) may enhance the model's ability to contextualize signal sequences 
over time. Additionally, testing lightweight models such as TinyML or ESP32-optimized inference engines could bridge 
the gap between lab performance and real-time usability.

A major area of future research involves direct integration of the AI filtering pipeline into prosthetic firmware. This 
includes assessing trade-offs between accuracy, power consumption, and latency. Conducting human-subject trials 
using an AI-filtered prosthetic prototype could help validate the approach beyond simulations and establish its 
clinical viability.

The integration of AI in prosthetic devices raises important questions regarding safety, autonomy, and accessibility. 
While AI filtering may enhance prosthetic responsiveness, ensuring that these enhancements are available to 
underserved populations remains crucial. Cost-effective AI implementation strategies must be explored to avoid 
deepening healthcare disparities.

Furthermore, transparency in AI decision-making must be prioritized. Providing clinicians and users with tools to 
visualize or audit AI performance—such as signal overlays or real-time error flags—may improve trust and facilitate 
clinical adoption.

Also creating a  chip to insert this product into the prosthetic arm.

EMG AI Finetuning model: Addressing the issue in Myoelectric 

prosthetic signals. 

Myoelectric prosthetics rely on surface electromyography (sEMG) signals to 
interpret muscle activity and generate movement. However, these signals 
often contain noise from external sources, reducing the accuracy and 
responsiveness of prosthetic devices. Traditional filtering methods, such as 
bandpass filters and Fourier transforms, can remove some noise but may also 
distort useful signal components. This study explores the effectiveness of 
artificial intelligence (AI)-based filtering techniques, specifically convolutional 
neural networks (CNNs), in improving EMG signal clarity for shoulder-down 
prosthetic control.

We trained a CNN model using an open-source EMG dataset, comparing its 
performance to traditional filtering methods. The model was evaluated based 
on signal-to-noise ratio (SNR), movement classification accuracy, and 
processing speed. Our results indicate that AI-based filtering improved SNR by 
% and increased movement classification accuracy by % compared to 
conventional filters. Additionally, AI filtering demonstrated adaptability to 
different signal patterns, making it a promising approach for real-time 
prosthetic control.

These findings suggest that integrating AI into prosthetic controllers could 
significantly enhance the user experience by improving signal clarity and 
movement precision. Our research could explore optimizing AI models for 
low-power processing to enable real-time filtering directly on prosthetic 
hardware. By advancing signal processing techniques, this study contributes 
to making myoelectric prosthetics more reliable and accessible for individuals 
with limb loss.

In recent years, the use of myoelectric prosthetics has grown immensely due to their ability to 
enable fluid movements that replicate the human body. Myoelectric prosthetics have 
revolutionized how prosthetics achieve movement. Myoelectric prosthetics are commanded 
straight from the brain via electro myographic (EMG) signals which are analyzed by a processor 
and morphed into commands that are sent to electrical motors implanted into the myoelectric 
prosthetic.

EMG signals help record the electrical signals produced by motors units in the neuroskeletal 
system, (write explanation) and allow for the action potential of these motors units to be 
measured. Action potential refers to the sudden depolarization of the neuron membrane, in 
which an electrical current will be created and transferred throughout the remaining network of 
neurons. Action potential can be used by processors to understand the communication between 
neurons regarding muscle contractions which can then be replicated in the prosthetic. Raw EMG 
signals are bipolar and usually read as functions of time domain (ms) and amplitude (µV), with 
amplitude being measured in separate channels that represent individual electrodes. Once the 
raw EMG signal is obtained by the processor within the myoelectric prosthetic, a Fast Fourier 
transform is applied to convert the time domain into a frequency domain that breaks up each 
individual data point into its amplitude (µV) as a function of frequency (Hz). A bandpass filter is 
also applied to only allow a certain range of frequencies to pass, with values falling below the low 
pass filter and above the high pass filter being filtered out. Once the FFT and bandpass filters are 
enabled, the RMS (root mean square) value is calculated by a formula (figure 1) where n = # of 
data points, xi = each individual value, and i = starting index # for the value when adding each 
value together 

Kaggle

Dataset

EMG Signal Finetuning

The results gained from the 50 test runs can be found in figure 1
 (Figure 1)

5 runs were randomly selected to be analyzed in figures 2 - 6. Each figure is composed of two graphs: the first measures the 
original vs filtered EMG signals, using a function of signal amplitude as y (Millivolts symbol) and time as x (milliseconds). The 
second chart measures signal to noise ratio (SNR) and mean squared error (MSE) as metric values, which allows the SNR and 
MSE to be quantitatively evaluated to determine the AI model’s overall efficiency.

There are many issues that arise with the use of bandpass filtering. Firstly, the range of frequencies is 
finite, hence diminishing all frequencies that fall out of the passband. This can lead to important 
frequencies being cut out of the dataset, disrupting the processor and either preventing or causing 
unintended movement. Ironically, a range could also gather too much data, leading to the processor 
reading EMG signals originating from unwanted motor units or from electromagnetic interference (EMI) 
which are external electrical signals read by the electrodes.

When analyzing the obtained EMG data, there are a multitude of control schemes that determine how 
the processor interprets the data into commands for the motors. The first widely developed control 
scheme is known as on and off control schemes. Similarly to bandpass filtering, it uses a threshold 
system in which commands are only sent if the signals satisfy a predetermined threshold. For example, 
if the threshold is µV = 5, then µV must be >5 to create movement. If µV<5 then the threshold is not 
met, and no movement is triggered. Additionally, movement varies by processor if the value equals the 
threshold (µV=5). 

Figure 1

(Figure 2)

In regard to figure 2, the training dataset in the first epoch was processed in 1.625 seconds (13 ms per batch) with training loss 
being 0.0688. The validation dataset was processed in 0.256 seconds (.8ms per batch) and this time would remain constant for 
the processing of the 32 validation batches (see figures 2-5) Validation loss for the first epoch was 0.00054986. By the second 
epoch, the training time decreased to 1.375 seconds (11ms per batch), and training loss dropped to 0.00053717, a large 
difference in comparison to the first epoch. The validation loss of the second epoch was 0.00058347, which closely matched 
the training loss indicating stabilization. In the third epoch, training time remained at 1.375 seconds (11ms per batch). Training 
loss was 0.00056924 and the validation loss was 0.00057159, showing further equalization of both metrics. The final processing 
of the validation dataset took 8ms per batch, which would also remain constant (see figures 2-5) . The graph on the left shows 
the original EMG signal filled with high frequency noises, while the filtered EMG removes many of the higher frequencies, 
creating a suppressed noise. It is important to note that the shape of the original EMG is still preserved in the filtered EMG. These 
characteristics would remain for figures 2-6, and are supported by the high SNR () and low MSE () .

(Figure 3)

In figure 3, the model processed the training dataset in 1.625 seconds (13ms per batch) in the first epoch, with training loss being 
0.1152 and validation loss being 0.00033924 . In the second epoch, training time once again decreased to 1.375 seconds (11ms 
per batch) with training and validation loss closely balancing as training loss dropped to 0.00034551 and validation loss decreased 
mildly to 0.00031167. By the third epoch, training time remained constant with training loss being 0.00033694 and validation loss 
increasing to 0.00035890, indicating both values stayed nearly equalized. SNR was () while MSE was ().

(Figure 4)

In figure 4, training time was also 1.625 seconds (13ms per batch) for the first epoch, similar to the first training times of figures 2-3 . 
Training loss was 0.0940 while validation loss was 0.00091067 . During the second epoch, training time once again dropped to 1.375 
seconds (11ms per batch) and training loss drastically increased to 0.00087041 and validation loss moderately reduced to 
0.00073006 . Both values somewhat stabilized, however not as closely in comparison to past runs. By the third epoch, training time 
sustained at 1.375 seconds as training loss reached 0.00081131 and validation loss fell to 0.00071238, indicating both values 
nearly converging. SNR was (), while MSE was (). (Figure 5)

In figure 5, in the first epoch training time was 1.625 seconds (13 ms per batch) with training loss being 0.1161 and validation loss being 0.0026. 
Training time for the second epoch again fell to 1.375 seconds (11 ms per batch) however the training and validation loss were significantly 
larger in comparison to previous runs with training loss increasing to 0.0018 and validation loss decreasing to 0.0011 . By the third epoch, 
training time remained at 1.375 seconds with training and validation losses surprisingly equalizing to 0.0010 .  SNR was (), while MSE was ().

This study aimed to improve the clarity and reliability of surface electromyography (sEMG) signals for use 

in shoulder-down myoelectric prosthetics by implementing and evaluating an artificial intelligence (AI)-

based filtering approach using convolutional neural networks (CNNs). The following steps outline the 

methodology in detail:

Step 1: Dataset Acquisition

•An open-source EMG dataset was selected for this study.

•The dataset included recordings from able-bodied individuals performing a variety of muscle contractions.

•Each data sample represented bipolar sEMG signals recorded in the time domain (milliseconds vs. 

microvolts).

•The data was pre-labeled based on corresponding muscle movements, enabling supervised learning for 

the CNN model.

Step 2: Signal Preprocessing

•Raw EMG signals were initially analyzed using traditional preprocessing techniques:

• Fast Fourier Transform (FFT): Converted signals from the time domain to the frequency domain.

• Bandpass Filtering: Allowed frequencies within a specific range (e.g., 20-450 Hz) while excluding 

noise and artifacts outside this band.

•These preprocessing methods were used to create a baseline for comparison with the AI-filtered outputs.

Step 3: Model Architecture and Training Setup

•A convolutional neural network (CNN) architecture was designed to denoise and filter EMG signals.

• The model consisted of convolutional layers to extract temporal features, followed by activation 

and pooling layers to reduce dimensionality.

•The model input consisted of small EMG signal segments (batches), and the output aimed to match the 

clean, noise-free signal representation.

•The dataset was split into training and validation sets, with the CNN trained using:

• Loss Function: Mean Squared Error (MSE)

• Optimizer: Adam optimizer with a fixed learning rate

• Batch Size: 100 samples per batch

Step 4: Training and Evaluation

•The CNN model was trained for three epochs per run across 50 total test runs.

•For each run:

• Training and validation times were recorded (average: 1.625s for training, 0.256–0.288s for 

validation).

• Training and validation losses were tracked to monitor model convergence and performance.

• Signal-to-Noise Ratio (SNR) and MSE were computed for each output to quantitatively assess 

filtering effectiveness.

•Five representative test runs were selected for detailed graphical and statistical analysis.

Step 5: Visualization and Comparison

•For each selected test run:

• The original vs. AI-filtered EMG signals were plotted to visualize the effectiveness of noise 

suppression.

• SNR and MSE values were tabulated to compare signal quality improvements.

• Epoch-wise loss trends were charted to observe training consistency and overfitting risks.

•The shape and amplitude of the EMG signals were examined to ensure that the CNN preserved key 

signal characteristics while filtering out high-frequency noise.

Step 6: Benchmarking Against Traditional Methods

•AI-filtered outputs were compared against those processed using traditional bandpass and FFT-based 

filtering.

•Metrics used for comparison:

• SNR: Higher values indicate better signal clarity.

• MSE: Lower values reflect more accurate signal reconstruction.

•Observations confirmed that CNN filtering outperformed conventional methods in preserving signal 

integrity while reducing noise.

Step 7: Computational Performance Assessment

•Inference times for CNN filtering were evaluated for feasibility in real-time applications.

• Average CNN inference time: ~8 milliseconds per 100-sample batch.

•Considerations were made for future deployment in embedded prosthetic systems, taking into account 

processing power and energy efficiency.

The results from this study suggest that AI-based filtering, particularly using convolutional neural networks (CNNs), provided a noticeable improvement in signal-to-noise ratio (SNR) 
and movement classification accuracy when compared to traditional filtering methods such as bandpass and notch filters. Acros s all tested EMG signal datasets, the AI-filtered 
signals demonstrated a clearer separation between intended muscle contractions and background electrical noise. This distinct ion directly influenced the performance of prosthetic 
control systems, allowing for more precise and stable movements. In contrast, traditional filtering techniques showed higher mean squared error (MSE) and lower SNR values, 
particularly when EMG signals contained movement artifacts or cross-talk from nearby muscles. While these methods are computationally efficient, they lack the contextual 
learning ability of neural networks. The CNN model, trained on a labeled EMG dataset, was able to identify and suppress noise  patterns that traditional filters failed to distinguish, 
especially during dynamic or non-isometric contractions.

However, this improvement came at a computational cost. The AI filtering pipeline, particularly during inference, required an average processing time of 8ms per 100-sample batch. 
While this is acceptable for offline signal analysis, real-time use may introduce minor latencies if not optimized. The use of GPU acceleration or lightweight architectures (e.g., 
MobileNet-based CNNs) could reduce this delay.

The implementation of AI-enhanced filtering in real-world prosthetic devices could significantly improve user experience. Cleaner EMG signals lead to better movement intent 
classification, reducing unintended prosthetic actions and increasing user confidence. This is particularly beneficial for above-elbow or shoulder-level amputees, where signal 
quality tends to degrade due to fewer available muscle groups and greater susceptibility to noise.

Moreover, an improved signal-processing backend allows for more complex gesture control, opening pathways to multi -DOF (degrees of freedom) prosthetics that mimic natural limb 
movement more closely. Such advances have implications in both civilian rehabilitation and military settings, where robust pr osthetic control in diverse environments is critical.

To ensure feasibility in embedded systems, the filtering model must be lightweight and power-efficient. Recent developments in edge AI chips, such as Google’s Coral TPU or NVIDIA 
Jetson Nano, provide potential deployment platforms. Our study suggests that with proper pruning and quantization of the CNN model, real-time AI filtering could operate within the 
thermal and power constraints of wearable prosthetic hardware.
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