Abstract

EMG Al Finetuning model: Addressing the issue in Myoelectric
prosthetic signals.

Myoelectric prosthetics rely on surface electromyography (sEMG) signals to
interpret muscle activity and generate movement. However, these signals
often contain noise from external sources, reducing the accuracy and
responsiveness of prosthetic devices. Traditional filtering methods, such as
bandpass filters and Fourier transforms, can remove some noise but may also
distort useful signal components. This study explores the effectiveness of
artificial intelligence (Al)-based filtering techniques, specifically convolutional
neural networks (CNNSs), in improving EMG signal clarity for shoulder-down
prosthetic control.

We trained a CNN model using an open-source EMG dataset, comparing its
performance to traditional filtering methods. The model was evaluated based
on signal-to-noise ratio (SNR), movement classification accuracy, and
processing speed. Our results indicate that Al-based filtering improved SNR by
% and increased movement classification accuracy by % compared to
conventional filters. Additionally, Al filtering demonstrated adaptability to
different signal patterns, making it a promising approach for real-time
prosthetic control.

These findings suggest that integrating Al into prosthetic controllers could
significantly enhance the user experience by improving signal clarity and
movement precision. Our research could explore optimizing Al models for
low-power processing to enable real-time filtering directly on prosthetic
hardware. By advancing signal processing techniques, this study contributes
to making myoelectric prosthetics more reliable and accessible for individuals
with limb loss.

Introduction

In recent years, the use of myoelectric prosthetics has grown immensely due to their ability to
enable fluid movements that replicate the human body. Myoelectric prosthetics have
revolutionized how prosthetics achieve movement. Myoelectric prosthetics are commanded
straight from the brain via electro myographic (EMG) signals which are analyzed by a processor
and morphed into commands that are sent to electrical motors implanted into the myoelectric
prosthetic.

EMG signals help record the electrical signals produced by motors units in the neuroskeletal
system, (write explanation) and allow for the action potential of these motors units to be
measured. Action potential refers to the sudden depolarization of the neuron membrane, in
which an electrical current will be created and transferred throughout the remaining network of
neurons. Action potential can be used by processors to understand the communication between
neurons regarding muscle contractions which can then be replicated in the prosthetic. Raw EMG
signals are bipolar and usually read as functions of time domain (ms) and amplitude (uV), with
amplitude being measured in separate channels that represent individual electrodes. Once the
raw EMG signal is obtained by the processor within the myoelectric prosthetic, a Fast Fourier
transform is applied to convert the time domain into a frequency domain that breaks up each
individual data point into its amplitude (pV) as a function of frequency (Hz). A bandpass filter is

also applied to only allow a certain range of frequencies to pass, with values falling below the low

pass filter and above the high pass filter being filtered out. Once the FFT and bandpass filters are
enabled, the RMS (root mean square) value is calculated by a formula (figure 1) where n = # of
data points, xi = each individual value, and i = starting index # for the value when adding each

value together Figure 1

RMS = \/%fo

There are many issues that arise with the use of bandpass filtering. Firstly, the range of frequenciesis
finite, hence diminishing all frequencies that fall out of the passband. This can lead to important
frequencies being cut out of the dataset, disrupting the processor and either preventing or causing
unintended movement. Ironically, a range could also gather too much data, leading to the processor
reading EMG signals originating from unwanted motor units or from electromagnetic interference (EMI)
which are external electrical signals read by the electrodes.

When analyzing the obtained EMG data, there are a multitude of control schemes that determine how
the processor interprets the data into commands for the motors. The first widely developed control
scheme is known as on and off control schemes. Similarly to bandpass filtering, it uses a threshold
system in which commands are only sent if the signals satisfy a predetermined threshold. For example,
if the threshold is pV =5, then pV must be >5 to create movement. If yV<5 then the threshold is not
met, and no movement is triggered. Additionally, movement varies by processor if the value equals the
threshold (pV=5).
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Methodology

This study aimed to improve the clarity and reliability of surface electromyography (sEMG) signals for use
in shoulder-down myoelectric prosthetics by implementing and evaluating an artificial intelligence (Al)-
based filtering approach using convolutional neural networks (CNNs). The following steps outline the
methodology in detail:

Step 1: Dataset Acquisition

*An open-source EMG dataset was selected for this study.

*The dataset included recordings from able-bodied individuals performing a variety of muscle contractions.
*Each data sample represented bipolar sEMG signals recorded in the time domain (milliseconds vs.
microvolts).

*The data was pre-labeled based on corresponding muscle movements, enabling supervised learning for
the CNN model.

Step 2: Signal Preprocessing

Raw EMG signals were initially analyzed using traditional preprocessing techniques:
» Fast Fourier Transform (FFT): Converted signals from the time domain to the frequency domain.
« Bandpass Filtering: Allowed frequencies within a specific range (e.g., 20-450 Hz) while excluding
noise and artifacts outside this band.
*These preprocessing methods were used to create a baseline for comparison with the Al-filtered outputs.
Step 3: Model Architecture and Training Setup

A convolutional neural network (CNN) architecture was designed to denoise and filter EMG signals.
« The model consisted of convolutional layers to extract temporal features, followed by activation
and pooling layers to reduce dimensionality.
*The model input consisted of small EMG signal segments (batches), and the output aimed to match the
clean, noise-free signal representation.
*The dataset was split into training and validation sets, with the CNN trained using:
* Loss Function: Mean Squared Error (MSE)
« Optimizer: Adam optimizer with a fixed learning rate
« Batch Size: 100 samples per batch
Step 4: Training and Evaluation

*The CNN model was trained for three epochs per run across 50 total test runs.
*For each run:
« Training and validation times were recorded (average: 1.625s for training, 0.256—0.288s for
validation).
« Training and validation losses were tracked to monitor model convergence and performance.
« Signal-to-Noise Ratio (SNR) and MSE were computed for each output to quantitatively assess
filtering effectiveness.
*Five representative test runs were selected for detailed graphical and statistical analysis.
Step 5: Visualization and Comparison

*For each selected test run:

« The original vs. Al-filtered EMG signals were plotted to visualize the effectiveness of noise

suppression.

« SNR and MSE values were tabulated to compare signal quality improvements.

» Epoch-wise loss trends were charted to observe training consistency and overfitting risks.
*The shape and amplitude of the EMG signals were examined to ensure that the CNN preserved key
signal characteristics while filtering out high-frequency noise.

Step 6: Benchmarking Against Traditional Methods

Al-filtered outputs were compared against those processed using traditional bandpass and FFT-based
filtering.
*Metrics used for comparison:

« SNR: Higher values indicate better signal clarity.

« MSE: Lower values reflect more accurate signal reconstruction.
*Observations confirmed that CNN filtering outperformed conventional methods in preserving signal
integrity while reducing noise.
Step 7: Computational Performance Assessment

Inference times for CNN filtering were evaluated for feasibility in real-time applications.
« Average CNN inference time: ~8 milliseconds per 100-sample batch.

*Considerations were made for future deployment in embedded prosthetic systems, taking into account
processing power and energy efficiency.

Results

The results gained from the 50 test runs can be found in figure 1
(Figure 1)

5 runs were randomly selected to be analyzed in figures 2 - 6. Each figure is composed of two graphs: the first measures the
original vs filtered EMG signals, using a function of signal amplitude as y (Millivolts symbol) and time as x (milliseconds). The
second chart measures signal to noise ratio (SNR) and mean squared error (MSE) as metric values, which allows the SNR and
MSE to be quantitatively evaluated to determine the Al model’s overall efficiency.

(Figure 2)
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In regard to figure 2, the training datasetin the first epoch was processed in 1.625 seconds (13 ms per batch) with training loss
being 0.0688. The validation dataset was processed in 0.256 seconds (.8ms per batch) and this time would remain constant for
the processing of the 32 validation batches (see figures 2-5) Validation loss for the first epoch was 0.00054986. By the second
epoch, the training time decreased to 1.375 seconds (11ms per batch), and training loss dropped to 0.00053717, a large
difference in comparison to the first epoch. The validation loss of the second epoch was 0.00058347, which closely matched
the training loss indicating stabilization. In the third epoch, training time remained at 1.375 seconds (11ms per batch). Training
loss was 0.00056924 and the validation loss was 0.00057159, showing further equalization of both metrics. The final processing
of the validation dataset took 8ms per batch, which would also remain constant (see figures 2-5) . The graph on the left shows
the original EMG signal filled with high frequency noises, while the filtered EMG removes many of the higher frequencies,
creating a suppressed noise. It is important to note that the shape of the original EMG is still preserved in the filtered EMG. These
characteristics would remain for figures 2-6, and are supported by the high SNR () and low MSE () .

(Figure 3)
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In figure 3, the model processed the training datasetin 1.625 seconds (13ms per batch) in the first epoch, with training loss being
0.1152 and validation loss being 0.00033924 . In the second epoch, training time once again decreased to 1.375 seconds (11ms
per batch) with training and validation loss closely balancing as training loss dropped to 0.00034551 and validation loss decreased
mildly to 0.00031167. By the third epoch, training time remained constant with training loss being 0.00033694 and validation loss
increasing to 0.00035890, indicating both values stayed nearly equalized. SNR was () while MSE was ().

(Figure 4)
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In figure 4, training time was also 1.625 seconds (13ms per batch) for the first epoch, similar to the first training times of figures 2-3 .
Training loss was 0.0940 while validation loss was 0.00091067 . Duringthe second epoch, training time once again dropped to 1.375
seconds (11ms per batch) and training loss drastically increased to 0.00087041 and validation loss moderately reduced to
0.00073006 . Both values somewhat stabilized, however not as closely in comparison to past runs. By the third epoch, training time
sustained at 1.375 seconds as training loss reached 0.00081131 and validation loss fell to 0.00071238, indicating both values

nearly converging. SNR was (), while MSE was (). (Figure 5)
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In figure 5, in the first epoch training time was 1.625 seconds (13 ms per batch) with training loss being 0.1161 and validation loss being 0.0026.
Training time for the second epoch again fellto 1.375 seconds (11 ms per batch) however the training and validation loss were significantly
larger in comparison to previous runs with training loss increasing to 0.0018 and validation loss decreasing to 0.0011 . By the third epoch,
training time remained at 1.375 seconds with training and validation losses surprisingly equalizing to 0.0010. SNR was (), while MSE was ().

Theresults from this study suggest that Al-based filtering, particularly using convolutional neural networks (CNNs), provided anoticeable improvement in signal-to-noise ratio (SNR)
and movement classification accuracy when compared to traditional filtering methods such as bandpass and notch filters. Acros s all tested EMG signal datasets, the Al-filtered
signals demonstrated a clearer separation between intended muscle contractions and background electrical noise. This distinction directly influenced the performance of prosthetic
control systems, allowing for more precise and stable movements. In contrast, traditional filtering techniques showed higher mean squared error (MSE) and lower SNR values,
particularly when EMG signals contained movement artifacts or cross-talk from nearby muscles. While these methods are computationally efficient, they lack the contextual
learning ability of neural networks. The CNN model, trained on a labeled EMG dataset, was able to identify and suppress noise patterns that traditional filters failed to distinguish,
especially during dynamic or non-isometric contractions.

However, this improvement came at a computational cost. The Al filtering pipeline, particularly during inference, required an average processing time of 8ms per 100-sample batch.
While this is acceptable for offline signal analysis, real-time use may introduce minor latencies if not optimized. The use of GPU acceleration or lightweight architectures (e.g.,
MobileNet-based CNNs) could reduce this delay.

The implementation of Al-enhanced filtering in real-world prosthetic devices could significantly improve user experience. Cleaner EMG signals lead to better movement intent
classification, reducing unintended prosthetic actions and increasing user confidence. This is particularly beneficial for above-elbow or shoulder-level amputees, where signal
quality tends to degrade due to fewer available muscle groups and greater susceptibility to noise.

Moreover, an improved signal-processing backend allows for more complex gesture control, opening pathways to multi-DOF (degrees of freedom) prosthetics that mimic natural limb
movement more closely. Such advances have implications in both civilian rehabilitation and military settings, where robust prosthetic control in diverse environments is critical.

To ensure feasibility in embedded systems, the filtering model must be lightweight and power-efficient. Recent developments in edge Al chips, such as Google’s Coral TPU or NVIDIA
Jetson Nano, provide potential deployment platforms. Our study suggests that with proper pruning and quantization of the CNN model, real-time Al filtering could operate within the
thermal and power constraints of wearable prosthetic hardware.

Conclusion

Conclusion

The study confirms that Al-based filtering, specifically using
convolutional neural networks, significantly enhances the quality
of EMG signals used in myoelectric prosthetic control. Compared
to traditional filtering methods, the CNN achieved lower mean
squared error and higher signal-to-noise ratio, effectively
suppressing unwanted noise without distorting the underlying
muscle signal patterns. This led to improved accuracy in
interpreting movement intentions, which is critical for reliable
prosthetic performance.

Although Al filtering introduces some computational overhead, the
processing times remained within acceptable limits, suggesting
feasibility for real-time application with further optimization. The
results demonstrate promising potential for integrating Al-
enhanced signal processing into next-generation prosthetic
systems, particularly for individuals with above-elbow amputations
or complex movement needs.

Future work should focus on expanding dataset diversity,
optimizing model efficiency for embedded deployment, and
conducting real-world testing with amputee users. By advancing
EMG signal processing through Al, this research paves the way
for more responsive, intuitive, and accessible prosthetic
technology.

Recommendations

Future efforts should focus on training the model with more diverse EMG datasets, including samples from
individuals with limb loss across different amputation levels. Incorporating temporal and dynamic scenarios—such
as ambulatory motion, electrode drift, and surface variation—will help the model better approximate real-world
variability.

In parallel, architectural innovation is essential. Exploring hybrid models that combine CNNs with attention
mechanisms or recurrent neural networks (RNNs) may enhance the model's ability to contextualize signal sequences
over time. Additionally, testing lightweight models such as TinyML or ESP32-optimized inference engines could bridge
the gap between lab performance and real-time usability.

A major area of future research involves direct integration of the Al filtering pipeline into prosthetic firmware. This
includes assessing trade-offs between accuracy, power consumption, and latency. Conducting human-subject trials
using an Al-filtered prosthetic prototype could help validate the approach beyond simulations and establish its
clinical viability.

The integration of Al in prosthetic devices raises important questions regarding safety, autonomy, and accessibility.
While Al filtering may enhance prosthetic responsiveness, ensuring that these enhancements are available to
underserved populations remains crucial. Cost-effective Al implementation strategies must be explored to avoid
deepening healthcare disparities.

Furthermore, transparency in Al decision-making must be prioritized. Providing clinicians and users with tools to
visualize or audit Al performance—such as signal overlays or real-time error flags—may improve trust and facilitate
clinical adoption.

Also creating a chip to insertthis product into the prosthetic arm.

EMG Signal Chip

Insert Chip for it to
improve myoelectric
signals
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